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A three-component condensation involving reactive phe-
nols, aldehydes, and active methylene substrates is described un-
der BF3.Et2O catalysis to afford benzopyranyl products in satis-
factory yields.

During last two decades, multi-component reactions (MCR)
have proven remarkably successful in generating molecular
complexities in a single synthetic operations.1 In context to
MCR, ortho-quinone methides (o-QMs) have also been utilized
in many elegant tandem processes.2 However, a majority of re-
actions of o-QMs are restricted to cycloadditions with reactive
olefins3,4 while only a limited work has appeared with carbon nu-
cleophiles.5 Difficulty in formulating proper reaction conditions
compatible with the simultaneous generation of both o-QM and
the carbanions seems to hamper the fuller exploitation of o-QMs
in organic synthesis.2

Though, o-QMs are believed to be involved in 2:1 conden-
sation of phenols with aldehydes under acid or base catalysis6

(Scheme 1), surprisingly to our knowledge the trapping of o-
QMs with nucleophilic reagents other than phenols has never
been reported under these conditions.

Our goal was to develop a tandem process that would allow
in-situ trapping of o-QM with suitable carbon nucleophiles other
than phenols to provide a rapid access to novel heterocyclic
products. Towards this end, we choosed active methylene sub-
strates as precursors of carbon centered nucleophiles and Lewis
acid to promote the generation of o-QM as well as to effect eno-
lisation of active methylene substrates. A test reaction using an
equivalent amount of 2-naphthol 1 and benzaldehyde 2 and an
excess of ethyl acetoacetate 3 was carried out under BF3.Et2O
catalysis as depicted in the Scheme 2.

We anticipated that the Michael product 4 formed via the
trapping of the o-QM by the enol might undergo ring closure
by the participation of phenolic OH either at the keto or the ester
function to form benzopyran 5 or benzo-fused lactone 6. In the
event, the reaction (0 �C ! RT, 8 h and then under reflux, 4 h)
provided a colourless solid (59% yield, mp 118–120 �C) identi-
fied on the basis of analysis and spectral data7 as benzo-fused
pyran 5. It is noteworthy that none of the lactone product 6
was detected presumably due to the preferred attack of the phe-
nolic OH at the softer keto group, being further activated by
Lewis acid complexation.8,9 The present procedure has been suc-
cessfully extended to different combinations of phenols, alde-
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Table 1. 3 Component condensations between reactive phe-
nols, aldehydes, and active methylene substrates7,10

Sr. 
No.

Reactants Product Yield
% 

mp
/ °C 

1 β -naphthol,
p-anisaldehyde,

Ethyl acetoacetate

O

COOEt

CH3

MeO
7

57 117–19

2 β -naphthol,
p-anisaldehyde,
Acetylacetone

O

CH3

MeO
COCH3

8

60 156–57

3 β -naphthol,
p-cholobenzaldehyde,

Ethyl acetoacetate
O

COOEt

CH3

Cl 9

50 130–32

4 4-methoxyphenol,
benzaldehyde,

Ethyl acetoacetate
O

COOEt

CH3

MeO

10

48 140–43

5 2,7-dihydroxynaphthalene,
p-nitrobenzaldehyde,

Acetyl acetone
O

CH3

O2N

OH

COCH311

30 232–34

6 2,3-dihydroxynaphthalene,
p-nitrobenzaldehyde,

Ethyl acetoacetate
O

COOEt

CH3

O2N

OH

12

41 215–17

7 β -naphthol,
isobutyraldehyde,
Ethyl acetoacetate

O

COOEt

CH3

13

30 oil

8 β -naphthol,
salicylaldehyde,

Ethyl acetoacetate
O

H

O

H
CH3

COOEt

17

61 200–02

9 β -naphthol,
2-hydroxynaphthaldehyde,

Ethyl acetoacetate
O

H

O

H
CH3

COOEt
18

35 180–82
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hydes, and active methylene substrates under BF3.Et2O catalysis
and the results are cited in the Table 1.10

Attempts to effect the reaction with Br�nstedt acids failed,
whereas other Lewis acids examined i.e. SnCl4, AlCl3, and TiCl4
produced complex mixtures; only ZnCl2 worked, though in the
test reaction, 5 was obtained in a low yield of 27%. Thus, by us-
ing an excess of active methylene substrate and BF3.Et2O as the
catalyst of choice, we have been successful in effectively trap-
ping the o-QM intermediate to offer a convenient 3-component
process towards the synthesis of benzo-fused pyrans.

We have also examined the 3-component reaction of salicy-
laldehyde with �-naphthol and an excess of ethyl acetoacetate
under BF3.Et2O catalysis. The reaction provided after SiO2 col-
umn purification a novel bridged bichromans 1710 as a single di-
asteriomer in 61% yield (Entry 8). Mechanistically, the forma-
tion of 17 is proposed to proceed via the initially formed
hydroxy-chromene product 15 in a manner similar to that shown
in the Scheme 2. Subsequently, protonation on the enol ether
from the side of the smaller benzylic hydrogen generates 16. Fi-
nally, attack of phenolic OH on oxonium ion intermediate 16
completes the formation of 17 (Scheme 3). Low value of vicinal
coupling constant (J ¼ 4Hz)10 between the benzylic hydrogen
and –CHCO2Et supports cis-disposition of these protons as
shown in the structure 17.

Similar reaction was also found to occur with 2-hydroxy-
naphthaldehyde to provide the bridged bichroman 18 in moder-
ate yield (Entry 9). The structure of 18 rests on spectral data10

and a final confirmation is secured from its single crystal X-
ray analysis11 as depicted in the ORTEP plot (Figure 1).

In conclusion, we have reported an efficient 3-component
methodology for a rapid construction of benzopyrans from easily
available substrates.12 Unlike the base-catalyzed additions of
carbanions on o-QM which afford only open chain products,5

the present procedure directly leads to cyclic benzo-fused pyran

products. It is noteworthy that benzopyran structural motif is
found in multitude of natural products,13 many possessing signif-
icant biological activities.14 In addition, the present methodolo-
gy also offers an easy route towards the synthesis of novel bridg-
ed bichroman systems.
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Figure 1. ORTEP plot of 18.
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